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Radiative properties of opaque materials strongly depend on their surface 
condition. The fabrication of superficial cavities of various forms and dimen- 
sions modifies the directional spectral emissivities or absorptivities. They are 
usually increased compared to those of optically smooth material; the gain 
depends on the material, the type of cavities, as well as the wavelength X and the 
direction A of the emitted or incident radiation. When grooves of dimensions 
larger than X are fabricated in a sample, the models, taking into account the 
successive reflections on their inner sides, give a good agreement with experi- 
mental data. But a similar theory does not explain the substantial increase of the 
infrared emissivity of ballblasted samples. 

KEY WORDS: directional spectral emissivity; macroroughness; microrough- 
ness; mechanical surface treatments; radiative properties. 

1. I N T R O D U C T I O N  

Radiat ive properties of an  optically polished opaque material  depend  only 

on its temperature  T, for an  incident  or emitted flux characterized by  a 
wavelength )t and  a direction A. The adjective "opaque"  means  that the 

material  does not  t ransmit  any  fraction of the incident  monochromat ic  
electromagnetic radiat ion;  more restrictively, the penetra t ion depth is sup- 

posed to be macroscopical ly small (less than a millimeter). The expression 
"optically polished" applies to a surface, the roughness of which is charac- 

terized by dimensions such as quadrat ic  average heights o, much  smaller 
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than the wavelength ?t of the considered radiation (o << X), and by surface 
wavelengths long compared to X. For these opaque and almost perfectly 
plane materials, the directional spectral factors may be deduced from the 
values of the indices of refraction and extinction; for given T, X, and A, the 
emitted, reflected, or absorbed fluxes are readily determined. 

In order to modify the radiative transfers, coatings may be applied that 
impose their own radiative characteristics. This happens spontaneously 
when oxide layers grow on the surface of heated metals. But the results are 
unforeseeable and not always in conformity with what was expected. Paints 
may be used to increase the emitted flux, for example; but ageing and 
adherence problems arise when the material is exposed to corrosive sub- 
stances or subjected to temperature variations, etc. 

Simple processes such as grooving (Section 3) or sandblasting (Section 
4) produce cavities of diversified types. When their geometrical characteris- 
tics are larger than X, the concept of "apparent" radiative properties can be 
introduced, which includes both emission and reflection on the inner sides 
of the cavities. In this paper, geometrical optics is used to compute these 
properties. The calculated values are compared with experimental results 
obtained with two experimental arrangements. Except for one case, the 
agreement is quite good. These processes may increase the hemispherical 
emissivities; they also allow the emission to be favored towards a given 
direction. Radiative transfers may be optimized, and no ageing problem 
occurs as the considered treatments are long-lasting, which is not the case 
for paints. 

2. APPARENT RADIATIVE FACTORS OF A CAVITY 

Let us recall that the radiative properties of an opaque material, the 
surface of which is optically smooth or slightly rough (o < ?t), are character- 
ized by the following factors [1]. 

I. The directional spectral emissivity E[(Yt, A, T) is the ratio of the flux 
(Fig. 1) emitted by an elementary surface dS, in a solid angle df] 
around A and in the wavelength range [X,?t + dX], to the one 
emitted by a blackbody under the same conditions, e~, is a function 
of the wavelength X, of the direction of emission A(0, q0) (symboli- 
cally noted by a prime '), and of the temperature T of dS. 

2. If a flux is falling upon dS from the direction A in the range dX, the 
directional spectral absorptivity a~,(X, A, T) represents the absorbed 
fraction and the directional-hemispherical spectral reflectivity 

t~z:a 
Px ()t, A, T) represents the fraction reflected towards all directions 
of a hemispherical envelope covering dS, (notation r,). 
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Fig. 1. Elementary surface dS emitting a flux towards the direction A or receiving a flux from 
the same direction. ON is the perpendicular to dS; Ox is the reference axis in the plane of dS; 
df~ is the solid angle around A. 

3. If the flux falling upon dS comes from all the directions within the 
half space surrounding dS, the fraction reflected in the direction A, 
within the solid angle df~, is called the hemispherical-directional 
spectral reflectivity Px �9 This factor is seldom employed as it 
depends on the spatial distribution of the incident flux [1]; it 
becomes of practical interest when this distribution is isotropic; the 
reflectivity is then noted Ox iso. (~, A, T). 

The conservation of energy between the flux incident from the direc- 
tion A on one hand and the fluxes reflected and absorbed on the other 
hand, as well as the conservation of the "black" radiation corresponding to 
the perfect thermodynamic equilibrium, lead, respectively, to the relations 
[2] 

al  + 01 ~ =  1 ( la)  

t c:~t ex + OXi~o. = 1 ( lb)  

In these conditions, Kirchhoff's law [1, 2] is represented by any of the 
relations 

 i(x, :r) = o i(x, r )  (2a) 

0x iso.( x, A, T)  (2b) ox ( X , A , r ) =  

Because of these relations, the determination of only one factor is sufficient 
to compute all the fluxes whether emitted, absorbed or reflected. Later on, 
we shall assume that the directional spectral emissivity E~,(X, A, T) of the 
material of the inner side of the cavity is known and independent of the 
angle q0 (Fig. 1). We note c~,(0) with 0 = (A,0N). 
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2.1. Conventions and Assumptions. Apparent Directional 
Spectral Emissivity 

The cavities usually studied have a plane aperture, the surface of 
which is called "apparent surface" S a (Fig. 2). The apparent directional 
spectral emissivity e~,a (A) of the cavity in the direction A is equal to the one 
that the plane surface S~ should have if it were materialized, to produce the 
same flux in the direction A; r is an average over the surface S~ as the 
flux, coming from the cavity and crossing S, at M, is not uniform. This 
definition of e~,,(A) implies that the dimensions of the cavity are small 
compared to the distance it is observed from. Otherwise, the flux appar- 
ently "emitted" in the direction A, proportional to c~(A), is in fact an 
average, upon the surface S e of the inner side, of the fluxes leaving each 
point Q. We call "leaving flux" the sum of the fluxes emitted and reflected 
at Q. If we note Lx(A, Q)= Lx(A,M ), the intensity of the leaving flux, 
e~ (A) is equal to 

(ia(A) = LO(T)@ LO(T)S ~ (3) 

For a blackbody, the intensity is independent of direction and is designated 
by L~ The direction A is defined by two angles, noted Y and ~, 
whatever cavities may be considered. For infinite length grooves (Sections 2 
and 3) and for spherical caps (Section 4), y and ~ do not have the same 
definition. 

D ~ A  NS 
Sa X - - -  

M ~ x  

I ' -  ~N: 

Fig. 2. The apparent surface, a nonmaterial plane of area S o, limits the aperture of a cavity, 
the inner sides area of which is @. A flux leaves the point M towards the direction A. D is the 
perpendicular projection of A upon the plane (MN, Mx) with MN normal to S a and the Mx 
reference axis of the S a plane. A is defined by the angles (,/,~) with 7 = ( D ,  MN) and 

= (&D). 
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The increase of the apparent emission of the cavity, compared to the 
one of the plane material of the inner side, is due to the successive 
reflections of the radiation inside the cavity. The use of the laws of 
geometrical optics to take into account the reflections implies that the 
wavelength X is smaller than the dimensions of the cavity (X < o). This 
hypothesis is appropriate for most surfaces, except for infrared radiation 
and surface where o ~ 2t (Section 4). In other respects, instead of calculat- 
ing e~,~(A), it is often easier to compute the absorbed fraction of directional 
flux incident upon the cavity; so c~,a(A ) is determined and, according to 
Kirchhoff's law [Eq. (2)], 

c~,~(A) = ~,~(A) (4) 

In Eq. (3) for e~,a(A), the intensity Lx(A, Q) = Lx(O,~, Q) is the sum of 
the intensities of the fluxes emitted and reflected in Q; it is a function of 
the factors e~,(0) and O~(0 ) - -1 -e~ , (0 ) .  Calculation of r requires 
knowledge of the real value of the emissivity e~,(0) and the law of reflection. 
Unfortunately, this law is usually rather complex and not well known. Only 
a few determinations of the bidirectional spectral reflectivity o~(A, A) exist, 
a quantity representing the fraction of a flux coming from a direction A and 
reflected towards A [1], [3]. Therefore, in order to compute E~,~(A), simpli- 
fied radiative properties are used. We shall choose successively one of the 
three following hypotheses. 

Hypothesis (a): isotropic emission and diffuse isotropic reflection. The 
emissivity c~,(0) is independent of 0, and we write it e x. Whatever the 
direction A of the incident flux may be, the reflected flux is distributed with 
the same intensity towards all the directions A of the space. In other words, 
P'x' does not depend on A nor on A.  

Hypothesis (b): isotropic emission (emissivity ~) and specular reflection. 
The direction A r of the reflected flux is determined by the direction A of the 
incident flux following Descartes' laws. 

Hypothesis (c): anisotropic emission and specular reflection. The material 
emissivity c~,(0) varies with 0. The law of variation may be reached through 
a direct measurement from a plane surface finished in the same way as the 
inner sides of the cavity. If this surface is optically polished, e~,(0) may be 
computed from Fresnel's formulae [1]. We preferred the first method as the 
finish of the inner sides creates small roughnesses. However, for grazing 
incidence (0 > 80~ measurements turn out to be difficult; thus, c~(0) is 
determined by making use of Fresnel's formulae, and this introduces no 
appreciable error. 

For hypotheses (a) and (b), ex, the hemispherical spectral emissivity, is 
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computed from the measured c~,(0) through 

c a = 2f0"/2e~,cos 0 sin 0 dO 

Demont et al. 

(5) 

2.2. Infinite Length Groove: Apparent Pseudodirectional 
Spectral Emissivity 

Some cavities (Fig. 3) such as the V-groove [4, 5, 6], U-groove [7], 
U-groove [8], and N-groove [9], have already been studied. We also 
examined the combination of V and II [10], that is, the ~-groove. For 
these grooves with infinite length, the direction A is defined (Fig. 4) by the 
two angles, 7 = (D, MN) and ~ = (A, D); NMx is a cross-section plane with 
MN perpendicular to S a and Mx belonging to Sa. D is the projection of A 
upon the plane NMx. The apparent emissivity r = r ~), defined by 
Eq. (3), is a function of 7 and ~. Because of the particular geometrical 
properties of a groove, it is interesting to consider the elementary solid 
angle limited by the two half-planes P(7) and P(7 + tiT); these planes form 
a dihedron, the ridge of which is located on an elementary strip of infinite 
length and of area dS~ per unit length. Instead of examining each direction 
A contained in the plane P(7), we may average the values of the emissivities 
c~,(7,~) over all the directions of the plane P(V) and define an apparent 
pseudodirectional spectral emissivity e~(7). Let La( 7, ~, M) be the intensity 
of the flux leaving M in each direction A; one can easily show [10] that 

H 0 .''H ~' -"'H . H~ .if f" 

�9 

i -  n -  - i  

| | 

Fig. 3. Diagrams for some infinite length grooves: (a) symmetrical V-groove; (b) unsymmetri- 
cal V-groove; (c) U-groove; (d) U-groove; (e) concave circular groove; (f) convex circular 
groove. 
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Fig. 4. Infinite length groove. The elementary apparent area per unit length is d S  a . A is a 
direction in the plane P(7). D is the perpendicular projection of A upon the cross-section plane 
( M x ,  M N ) .  For the computation of the apparent hemispherical emissivity exa , we consider the 
solid angle limited by the two half planes P(7) and P(-~ + dr). 

Then the apparent hemispherical spectral emissivity, equal to that which 
would characterize the plane surface S o, emitting a flux identical to the one 
produced by the groove towards all the directions A, is computed by the 
following equation: 

= �89 f + (r)COS r dr 
a -  ~/2  

(7) 

In the cross-section of the groove, the apparent directional spectral 
emissivity is given by Eq. (3), that is, 

(8) 

When the emission of the material is supposed to be isotropic [hypotheses 
(a) and (b)], the factors 4,(0) or O~(0) are independent of the direction A 
considered. So, in order to compute e~,~(7,~), one has only to take into 
account the number of reflections undergone by a ray, irrespective of its 
direction. Therefore the path of a ray may be projected upon a cross- 
sectional plane [10]; in consequence, the angle ~ has no influence and 

E~,~(r,~) = 4,~(3,,t~ = O)= e~(7) (9) 
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But, if the emission is anisotropic, even if the reflection is specular [hy- 
pothesis (c)], the emissivity E~,(0) depends on the angle 0 between A and the 
normal QN' to the inner side. 0 is different from the angle between D and 
QN' (Fig. 4), so 

= 0), %(v,r  eL(v) (10) 

In the literature (for example, [4-9]), the computation is limited to the 
determination of c~,a(y,g, = 0). In the present study, we also calculated 
eXXa(y) in the case of hypothesis (c), in order to compare these two apparent 
emissivities; the results will be described below. 

3. INFINITE LENGTH GROOVES: THEORETICAL AND 
EXPERIMENTAL RESULTS 

3.1. Methods of Computation 

First let us review briefly the main methods used and their assump- 
tions. 

The iterative method is based upon the solution of a linear integral 
equation [4, 7]. The variational (or Rayleigh-Ritz) method is based upon the 
solution of a system of coupled integral equations [11]. Both of these 
methods involve the notion of spectral radiosity [1]; consequently, the 
emission and the reflection of the inner side of the cavity have to be 
assumed isotropic [hypothesis (a)]. The image method implies a specular law 
of reflection. The emission is usually assumed to be isotropic [4, 7] [hy- 
pothesis (b)]; but it is possible to take into account an anisotropic emission 
[hypothesis (c)] [12], especially if the computation is limited to the determi- 
nation of e~,~(y, ~ = 0). 

The use of any of these methods leads to the radiative properties of a 
cavity. Figure 5 shows that a V-groove substantially increases the emissiv- 
ity in the direction perpendicular to the apparent surface; otherwise, the 
aspect of the curves e~, a (y, ~ = 0) depends on the hypothesis made upon the 
laws of reflection. 

The application of the Monte Carlo method to the determination of 
apparent factors is given in ref. [10]. The radiative energy leaving each 
component of the system is quantified in the "photon pack," or in shorter 
form, "photon." Each photon transports the same quantity of energy; it is 
followed during all its "lifetime" from its emission until its absorption or its 
exit out of the cavity. As the method lies upon the direct simulation of the 
phenomenon by statistical sampling, its results depend on the number of 
photons used, called the "size" of the sampling. The size has to be large 
enough so that the uncertainty of the results could be considered as 
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o 0.2 0.4 0.6 0.8 1 
90" 

Fig. 5. Apparent directional spectral emissivity e~a(7 , $ = 0) for a V-groove with vertex angle 
/? = 30 ~ The width L has no influence upon the results. The hemispherical spectral emissivity 
of the inner sides is ~x = 0.20. Dashed curve, iterative method [hypothesis (a)l; dot-dashed 
curve, image method [hypothesis (b)]. 

acceptable. However, up to now, no mathematical criterion has been set to 
determine a priori the right size. In any event, computation time is larger 
for this method than for the others, but it may be reduced by using special 
methods [10] such as approximation of implicit expressions by functions, 
choice of the factor to be calculated (ax x instead • qa), use of subroutines to 
generate random numbers, etc. 

On the other hand, the Monte Carlo method presents some advan- 
tages; in particular, it is well suited to problems of radiative exchange when 
the effective behavior of the materials for both reflection and emission has 
to be taken into account. As it is not submitted to any restrictive hypothe- 
sis, it may always be compared to other methods; the examples, presented 
in ref. [10], show a good agreement. Moreover, the same computational 
structure may be conserved whatever the hypothesis [(a), (b), or (c) above, 
for example]. 

Studies on V-grooves [4, 5] or U-grooves [7, 12] show that these 
cavities have complementary actions. The first type increases emission in 
the direction normal (7 = 0 ~ to the apparent surface (Fig. 5), while the 
second type increases the emission towards the tangential direction (7 
= 90 ~ when the reflection is specular (see Fig. 10 below). So a U-groove, 
which associates both of these grooves, should have an important apparent 
emissivity e~,a(7) whatever angle ,/ is considered. The curves of Fig. 6, 
computed by the Monte Carlo method with hypotheses (a), (b), and (c), 
show that the ratio x , cxa(7)/e x is generally larger than 2. The directional 
spectral emissivity e~,, measured for the material of the inner side of the 
cavity (Fig. 6), is used for the computation of e~(7) in the case of 
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y=3 ~ 

0.2 0.4 0.6 0.8 

H / L :  I 

90 ~ 

Fig. 6. Apparent  pseudodirectional emissivity Exxa(y) vs. ~, for a U-groove. The computat ion is 
based on the Monte Carlo method. Curve �9 is hypothesis (a) with ex = 0.22. Curve A is 
hypothesis (b) with c a = 0.22. Curve O is hypothesis (c); the directional spectral emissivity 
e~(0 = y) of the material (304 L stainless steel), measured at T = 773 K, % = 5/~m, is given by 
the continuous line curve without points. 

hypothesis (c). The value of the hemispherical spectral emissivity of the 
material, Eq. (5), is ex = 0.22. The importance of the reflection law is 
emphasized once again. On the other hand, the curves corresponding to 
hypotheses (b) and (c) are quite similar. This was to be expected since the 
anisotropy of emission is only noticeable for angles 0 larger than 60~ for 
these angles, the fluxes emitted are low as they are proportional to cos 0. 

The Monte Carlo method allows the comparison between the pseudo- 
directional spectral emissivity c~(7) and c~,a(y, ~ = 0), computed for the 

Y:O~ 30 ~ 

0.2 O.4 O.6 0.8 ~ 

l_L , 
F q 

H / L : I  

90 ~ 

Fig. 7. Comparison of two Monte Carlo method results in the case of hypothesis (c). e~(0 = y) 
is the same as in Fig. 6. Curve O, apparent pseudodirectional emissivity exxa(7); Curve V,  
apparent directional emissivity in the cross-section plane e~,a(y, ~ = 0). 
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cross-sectional plane. Following formula (9), these two emissivities have the 
same value if the material emission is isotropic, and this is true for isotropic 
or specular reflection. We note in Fig. 7 that these emissivities remain 
almost equal in the case of anisotropic emission [hypothesis (c)] for the 
reason quoted above. So a close estimate of the results can be found by 
assuming that the emission is isotropic; therefore the ray tracing can be 
done in the straight section plane. 

The cavity effect is usually characterized by the ratio between the 
hemispherical spectral emissivities cxo, Eq. (7), and cx, Eq. (5); we designate 
this ratio by 

s 
rt -- (11) 

Figure 8 gives, for a particular type of groove and various ratios L/H, the 
variation of rt as a function of the hemispherical spectral emissivity e x of the 
cavity material. We note that the efficiency of the cavity is quite important 
for low e x. When c x tends to zero, ~ tends to Sp/S o (Sp is the inner side area 
and S o the apparent area). Besides, the lower the L/H ratio, the stronger 
the cavity effect. Emissivity or absorptivity of a material may be tripled or 
quadrupled by a tO-grooving. 

1 
0 

�9 I I I I I I ~ I I 

L/-L'H=I 

0.2 0.4 0.6 q8 r,, x 

Fig. 8. Cavity effect, r t = %,/e x is given as a function of the hemispherical emissivity of the 
material. The calculation is done using the Monte Carlo method with hypothesis (b). 
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3.2. Comparison of Theoretical and Experimental Results 

3.2.1. Experimental Technique 
In order to measure the "apparent" characteristics, c~a(y, ~) or E~(~,, 

= 0), the flux in the direction A may be observed using a single large cavity 
or a grooved sample. The first technique has to be chosen if the apparent 
emissivity at each point M of S~ (Fig. 1) has to be measured. However, the 
emissivity ~,a(A) = r defined in Eq. (3), is an average over Sa, and 
the second technique we adopted leads to a better determination of this 
factor. The width and the depth of each groove are small compared to the 
length so that it may be considered as isothermal; the standard dimensions 
of samples are 200 • 100 • 12 ram. The experiments are conducted at 
T ~  700 K, at a wavelength ?~ close to ?~m(T); ?~m(T) corresponds to the 
maximum of the emission of the blackbody at this temperature, that is, 
between 4 and 5 /~m. The measured fluxes are large enough so that the 
relative error in the results is lower than 3%. 

The experimental arrangement allows us to aim at an area of the 
sample large enough to include a great number of grooves. The ratio 
between the flux leaving the sample in the direction A(y, r and the flux 
emitted by a blackbody is equal to the measured emissivity ~,meas.(~',~)" 
When the grooves of width L are separated by plane zones of width L' and 
of emissivity c~(7), c~ . . . . .  ('/, ~) depends on the ratio U / L  since 

e~,a(y,+ ) + (L'/L)r 
E~ . . . . .  (~/'~) = 1 + (L'/L) (12) 

The experimental arrangement has been described in previous publica- 
tions [3, 9, 12]. The target area, defined by the optical setup, is included in 
the aperture of the blackbody of diameter 22 mm. The monochromator is a 
Perkin-Elmer spectrometer. The optical bench includes a spherical mirror 
which focuses the flux leaving the sample or the blackbody into the 
entrance slit of the spectrometer. A second spherical mirror creates an 
image of the exit slit on a Ge-Au detector. A polarizer is introduced in the 
optical path so that the emissivities c~/! and ~ , . ,  corresponding to the two 
classical planes of polarization, are measured; the average c;, = (c~//+ e~j_) 
/ 2  is then computed [13]. The use of a chopper and a lock-in amplifier 
eliminates most of parasitic radiations, except for the fluxes reflected by the 
sample, which are the main causes of error [13, 14]. The use of two 
regulators reduces to 2 K the residual gap between the temperatures of the 
sample and of the blackbody. 



Surface Effects on Radiative Properties 347 

3.2.2. Advantages of Some Grooves 

Figure 9 represents the emissivities of a plane material sample and of a 
U-grooved sample of 304 L stainless steel at 773 K. The Monte Carlo 
computed results [hypothesis (c)] agree with experimental data, obtained 
with the first experimental arrangement made in our Laboratory [9, 12]; its 
precision, about  10%, was not as good as the present one, which is 3% as 
stated above. Moreover, the reflection of the inner sides may not have been 
perfectly specular. Fig. 9 shows that grooving substantially increases emis- 
sivity, which is almost doubled in all directions in spite of plane zones. 

Emission towards a given direction may be increased by grooving; for 
example, for a specular reflection of the material: 

1. A U-groove (Fig. 10) gives an apparent emissivity e~a(y,~ = 0 )  
which increases with y and tends to 1 for y = 90 ~ The correspon- 
dence between the experimental and image theory computed [hy- 
pothesis (c)] values is still reasonable; the differences are probably 
due to the reasons mentioned above. 

2. An unsymmetrical V-groove (Fig. 11) modifies the direction of the 
maximum of the emissivity. Although emission is assumed to be 
isotropic [hypothesis (b)], the image method computed values are in 
good agreement with the experimental values. 

If the V-groove is broadly opened (Fig. 12), the emissivity becomes more 
isotropic than for the plane material; e~,a(y, ~ -- 0) does not vary very much 

,f=0 ~ 

Z \  
0 0.2 0.4 0.6 0.8 

L/H =1 

90 ~ 

Fig. 9. Comparison between the measured emissivities e~, meas.('t', ~)= 0) at T = 773 K, k = 5 
/~m and the calculated emissivities E~,c~lc.(y, 4, = 0)= [e~a(y,~ = 0)+ e~,(y)]/2 for a 304 L 
stainless steel sample with U-grooves and plane regions. The value of L and H (2 mm) has no 
influence upon the results. Solid curve, directional spectral emissivity e~,(y) of a plane sample. 
Dot-dashed curve, apparent directional emissivity e~,calc.('(,+ = 0) computed by the Monte 
Carlo method with hypothesis (c). Dashed curve, measurements of e~, meas.(Y, + = 0). 
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g = 3  ~ 

. r S q A -  ,_, 

~ 60 ~ 

0 0.1 0.2 0.3 0.5 0.6 

Fig. 10. Comparison between the measured emissivities ~, mea,~.(Y, ff = 0) at T = 573 K, ~ = 
4.5/~m, and the calculated emissivities c~, ~ale.('f, ~' = 0) = [c~,a(y, ~ = 0) + c~,(7)]/2 for a 304 L 
stainless steel sample with U-grooves and plane regions. Solid curve, directional spectral 
emissivity ~(Y) of a plane sample. Dot-dashed curve, apparent  directional emissivity ~, ~at~.(3;, 

= 0) computed by the image method with hypothesis (c). Dashed curve, measurements of 
~ . . . . .  (7, ~ = 0). 

3O 

I '  

90,1 I 

0~ ~ - . . , 7  ", 

90* 
0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 

Fig. 11. Comparison between the apparent directional emissivities, measured, ~, mcas.(7, ~ = 0), 
at T = 573 K, 2~ = 4.5 ~m, and calculated ~,~(y, ~, = 0), for a 304 L stainless steel sample with 
unsymmetrical V-grooves. Dot-dashed curve, r = 0), computed by the image method 
with hypothesis (b) and a hemispherical emissivity of the material: r = 0.21. Dashed curve, 
measurements of c~, . . . . .  (~;, ~ = 0). 
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y =0  ~ 

0 

120 ~ 

30" 

60~ "90 ~ 

0.1 0.2 O.3 O.4 

Fig. 12. Comparison between the apparent directional emissivities, measured, 4, meas.('{, @ = 0), 
at T = 573 K, X = 4.5/~m, and calculated, e~a(T, ~b = 0), for a 304 L stainless steel sample with 
symmetric v-grooves. Solid curve, directional spectral emissivity el(y) of a plane sample. 
Dot-dashed curve, e~a(T, ~, = 0), computed by the image method with hypothesis (c). Dashed 
curve, measurements of 4, ..... (7, ~' = 0). 

with Y as is demonstrated by experimental as well as theoretical results 
[hypothesis (c)]. 

As shown by the examples presented, an adequate grooving of surfaces 
may be of practical interest when emission has to be increased or a 
particular direction has to be favored. Furthermore, they illustrate the good 
agreement between experiments and theories, the Monte Carlo method in 
particular; however, the exact radiative characteristics have to be used to 
compute an accurate evaluation of e~,a(7,~) and e~(7). Such a good 
agreement has been observed because the same machine finishing was 
applied to the inner sides of the grooves and to the plane surface. For small 
roughnesses it is impossible to obtain the same surface state for the inner 
sides of cavities and for the plane sample; therefore the agreement between 
experiments and theories is not as good. 

4. STUDY OF SPHERICAL-CAP CAVITIES: APPLICATION TO 
SANDBLASTED,  SHOTBLASTED,  AND BALLBLASTED 
SURFACES 

Superficial treatments such as milling or sandblasting produce small 
roughnesses and substantially modify radiative properties of materials. 
Many theories [13] have been proposed to explain their influence; two main 
approaches are used. The first, based on diffraction theory, presents a gap: 
it doesn't take into account multiple reflections or mask effects [13, 15], 
though they have a great influence for very rough samples. The second, 
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based on the laws of geometrical optics, is applicable when the dimensions 
characterizing the roughness (o) are larger than the wavelength A of the 
radiation (o > A) or are of the same order (o ----- A). We shall limit ourselves 
to the second approach. For our experimental conditions, in the visible 
range, o will be larger than )% whilst in the infrared range, ~ and )t will be of 
the same order. 

A rough surface has to be represented by a distribution of variously 
dimensioned cavities, the geometry of which has to be properly chosen. For 
machined surfaces where a direction is favored, V-grooves or semicircular 
grooves are well adapted, but they can't account for sandblasted surfaces. 
Three-dimensional models with pyramidal [16] or spherical [17] asperities 
are also unsatisfactory. Scanning electronic microscope pictures show that 
these treatments, especially ballblasting, produce concave spherical cap 
cavities on the surface of the sample (Fig. 13). In order to study the 
influence of this type of roughness, the apparent directional spectral emis- 
sivity of a spherical cap cavity has to be computed, and a statistical 
distribution of the cavities has to be adopted. 

The cavities are created by the projection of various particles: small 
grains of white corundum (sandblasting), regular spherical balls of glass 
(ballblasting), or small irregular particles of steel (shotblasting). The inner 
sides of cavities are not as well finished as the grooves discussed above 
(Section 3). As it is impossible to measure their exact radiative characteris- 
tics, we shall adopt those characterizing the optically smooth material, that 
is, anisotropic emission and specular reflection [hypothesis (c)]. However, as 
the inner sides are probably not smooth, the agreement between theory and 
experiment should not be expected to be as good as in Section 3. 

O/  

Fig. 13. Representation of ballblasted surfaces by spherical caps of varied characteristics. 
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4.1. Apparent  Direct ional  Spectral  Emissivity of a Concave  Spherical  Cap 

Let us take a spherical cap inscribed in a sphere of center O and radius 
R (Fig. 14a). It is characterized by 6, the complementary of its vertex 
half-angle, which we shall call the aperture. A direction A (Figs. 14b and c) 
is defined by the angles 3' = (A, MN) and ,~ = (OP, PX). P is the intersec- 
tion of 5 with the circle of center O, traced in the plane parallel to S,. PX 
is the projection of 5 upon this circle. In the plane xOy, P is located by its 
polar coordinates OP = r and +. 

Let us consider an incident ray in the direction A. After a specular 
reflection from the inner side of the cap at a point Q, the reflected ray 
remains in the plane ~r defined by PQ and the normal in Q, that is, OQ. So 
v is determined by the three points O, P, Q, or by O and the line 5. A 
second reflection may occur at a point Q'; QQ' is still in the plane v as well 
as the normal OQ'. So any reflected ray belongs to the diametral plane 
(Fig. 14d). The intersection of vr with the cap is an arc of circle H '  
characterized by the aperture 6'. The angle between 5 and the axis of 
symmetry of this arc is 3". One can easily find [18] 

3' = arcsin(sin 6 cos 3" ) c o s  3' (13) 

y' = arcsin(sin y cos ~b) (14) 

The angles of incidence and reflection are constants and equal to 

0 =  arcsin( R cosy ') (15) 

For a given point P and a direction A, the apparent directional 
emissivity or absorptivity is 

ei.(P, A) = c~io(P, A) 

= a~,(O) + c~,(O)[ 1 - c~,(O)l  + . . .  + c~,(O)[ 1 - c~,(O)l  "-1 

(16) 

o r  

! z ] n 
= = 1 - [ 1  -  i(0)j (17) 

where n is the number of reflections in the cap, and a[(O) = e~(O) is the 
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| 
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- -  . . . .  x ' d 

(9 @ 
Fig. 14. (a) Definition of the parameters 6, R. (b) and (c) Definition of the angles ~, and ff that 
characterize the direction A; the diametral plane ~r, defined by O and A, cuts the spherical cap 
following a circular sector IQI'. (d) Diagram of the successive reflections at Q, Q', . . . .  in the 
plane ~r(O, A). 

directional spectral absorptivity (or emissivity) of the optically smooth 
material. The averaging of e'xa(r, ~,,7~) over Sa, Eq. (3), leads to an apparent 
directional emissivity given by 

After integration, it appears that e[~(~,) is independent of R and ~; this last 
result could have been expected as the cap is symmetric. ,8 ex~(~, ) depends on 
the aperture 8, denoted by the superscript 8. 

To finish the computation, the number n of reflections undergone by a 
ray incident at P in the direction 2i is calculated [18, 19], from 

[ ~ r - , { ' - ~ '  1 ] (19) 
n = E 2 a r c c o s ( ( r / R ) c o s v ' )  + -2 

E means the integer part of the expression between brackets. In other 
words, the number of reflections undergone is increased from n to n + 1 
when r = r n with 

R cos (20) 
r. - cos y ~ n  7 i 
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Because n changes by steps, the integral in r has to be decomposed as 
follows: 

n=nl - t -  I 
48a(7) _ 2 (~=#L E 

~rR 2cos26 a, = 0 , = 1 
fr,, dx.(r, 7,+)rdrd ~ (21) 

r n -  I 

Integration or summation boundaries +/_, n t + 1, r o, and r,,, +l are given by 
the geometrical intersection conditions of A and Sa. We have 

+ c = ~  for 8 + 7 < ~ r  (22a) 
2 

7r  g'L = arcsin(cotg 7 cotg 6 ) for 8 + 7 >/~- (22b) 

n t+ l=E[Yr -7  ' - 6 '  1 ] (22c) 
2 1 7 ' -  8'I + Y 

r 0 = 0  for 6 + 7 <  -~ (22d) 
2 

r 0 _  R cos(vr 7' rr (22e) cosy '  - - 3') for (6 + 7) > 

R cos(7'  - 8') 
r,, + 1 = cos 7' (22f) 

Numerical computation of ,8 exa(7 ) has been performed for spherical 
caps of 304 L stainless steel for two sets of conditions: X -- 0.6/~m, T -- 300 
K, and X = 5 /~m, T = 773 K. The emissivity e~,(0) of the optically smooth 
material, as well as the apparent emissivity ,8 CXa(7), are represented in Fig. 
15. For a hemispherical cap (6 0), the ratio ,~=0 , �9 = ('Xa / /e  x lS much larger than 1 
for an almost normal incidence direction; but it decreases for larger angles 
of incidence so that, within the infrared range, the apparent emissivity of 
the cap is more isotropic than the emissivity of the smooth sample. When 8 
is less than 40 ~ '~ eXa(7 ) tends to be e~,(7). 

The cavity effect 7/, equal to the ratio exsa/ex of the hemispherical 
emissivities, Eq. (11), may be calculated from Eq. (21) after an integration 
as in formula (5). But it is easier to compute ~/ within the frame of 
hypothesis (a) or (b), as has been done in the literature. Analytical expres- 
sions for ~ are then obtained and the influence of reflection laws is put 
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Fig. 15. Apparent directional spectral emissivity c~(y)  of a spherical cap characterized by 6. 
The inner sides are made of 304 L stainless steel in the fol lowing cases: (a) 2t = 0.6 #m, 
T = 300 K; (b) X = 5 /~m, T =  773 K. Dashed curves, directional spectral emissivity c~(y) 
measured  for a smooth  sample.  Solid curves,  appa ren t  directional  spectral emissivity ~,~(T) 
calculated for various values of 8. 

~- , \s=6o~ , , ,, 
0 0.2 0.4 0.6 0.8 c~, 1 

Fig. 16. Cavi ty  effect ~/= c~a/c~, is given as a func t ion  of the hemispher ica l  emissivity ea of the 
material .  The  calculat ion was done  in the case of hypothes is  (a), solid curve; or  (b), dashed  

curve. 
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forward. It is found: 
For a diffuse isotropic reflection [hypothesis (a)] [81: 

= 1 ( 2 3 )  
1 - (1 - cx)( 1 -2sin6 ) 

For a specular reflection [hypothesis (b)] [5, 181: 

2 1 - s i n 8  ~ ( I - e x )  k 
% -  l + s i n 6  CXl+s in8  k=0 ? k + i ~  (24) 

The curves, traced in Fig. 16 for various values of 8, show that ~d and 7, are 
not very different for 8 = 0 ~ and are almost equal for 6 = 30 ~ or 60 ~ As 
for infinite length grooves, the cavity effect is all the more important as the 
cap is closed (small 6) and the emissivity c a of the material is small. As is 
expected, ~d and ~/s tend to approach Sp/Sa when e x approaches zero. 

4.2. Directional Spectral Emissivity of a Rough Surface Simulated by the 
Spherical-Cap Cavities Model 

As stated above, some rough surfaces may be modelled by the juxtapo- 
sition of spherical caps (Fig. 13) of various sizes and depths, which we shall 
characterize by the parameters R and 8. The plane regions between the 
caps correspond to caps with 8 tending to 90 ~ and R to infinity. A direction 
A is defined by the angle 7 with the normal to the apparent surface, which 
is common to all the cavities. 

Let us call c~,r(7) the directional spectral emissivity of the rough surface 
and p(R,8)dRd8 the probability for a point M to belong to the apparent 
surface of a spherical cap, the radius of which is between R and R + dR, 
and the aperture of which is between 8 and 8 + d6. e~,r(7) is inferred from 
e~sa(y) in Eq. (18) by 

(25) 

As ,6 ~xa(Y) is independent of R, the integral over R represents the probability 
density p(8) of the variable 8, that is, p(8)d8 is the probability for a point 
M to belong to the apparent surface of a spherical cap, the aperture of 
which is between 6 and 6 + d6, whatever the radius R may be. Then 

(26) 
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Fig. 17. Slope/~ = tg( at each point Q of the inner side of the spherical cap. 

Physical models as Beckmann's model [20] show that, for roughness 
dimensions larger than the wavelength (o > X), the important parameter is 
the quadratic average slope m of the surface. Here the slope at each point 
Q of the spherical cap is (Fig. 17):/~ = tg~; so we put 

m = ~ = tg~ (27) 

For a given cap of aperture 6, the slope distribution, that is, the probability 
P8 (/~)d/~ for the slope at Q to be between t~ and/~ + d/~, is equal to the ratio 
of the apparent elementary area dS,  at Q to the apparent total area of the 
cap: ~rR 2cos26; so 

P8 (/~) = /~ for 0 < /~ < cotg  8 (28a) 
C0S2(~(1 q- /12) 2 

P8 (/~) = - /~  for - cotg 8 </~ < 0 (28b) 
cos2~(l Jr- ~2) 2 

p~( /~ )=0  for /~>co tg8  or / ~ < - c o t g 8  (28c) 

The probability density p~(/0 is independent of R; for a given aperture 6, 
the slope distribution does not depend on the size of the cap. Now let us 
consider the probability 

p~R(.)a.aRa8 =p(R,8)dR a8 p~(~)a~ (29) 

to find a point Q where the slope is between/~ and/~ + d/~, in a cap, the 
radius of which is between R and R + dR, and the aperture of which is 
between 6 and 8 + d6. Let us integrate the formula (29) for all the values of 
R and 8; the slope distribution p (~)  of the rough surface is then obtained 
to be 

/'arccotg /z z o .  . 
P(tO =J~=o P t ~  (30) 
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P,s(t~) is given by Eq. (28). Now if we choose a p(/~) distribution, p(6) is 
calculated [18] from Eq. (30). We give two examples. 

For a gaussian slope distribution, 

1 exp - - -  (31) 
P(/*) = rn~- 2m 2 

the aperture distribution is 

, i4 + cogged) 
p ( 8 ) -  m 2 ~  sin28 m2sin 2-----~ sin28 ~ 2m 2 

with the condition 

m <  1 or ~ < 4 5  ~ (33) 

so that p(6) is always positive. Even with small aperture caps, the propor- 
tion of weak slopes remains important and high values of average slopes 
are not found. 

For an exponential slope distribution, 

( 1 exp -- for /x/> 0 (34) 
p(/x) = m ~  m 

the aperture distribution is 

my21 [ 3 ~/2cos6] 1 ( ~ - c o t g S )  p(6)= ~ 4 - - -  + - -  - - e x p  (35) 
sine8 m sin36 sin28 m 

with the condition 

~ or ~ < 50.16 ~ (36) 2 
m < 6~/3- - g 

The average, given by Eq. (26), of the apparent directional emissivities 
e[~a(7), computed through formula (21) and weighted by a probability p(8) 
given by Eq. (32) or (35), is calculated by making use of the trapezoidal 
rule. In spite of the appreciable differences between the two distributions of 
the caps, p(8) has little influence upon the curves representing r for 
different values of ~ [18]. This is the reason why the only results, shown in 
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Fig. 18, are those obtained with an exponential distribution. As before (Fig. 
15), the radiative characteristics c~,(0) for the optically smooth material are 
those of 304 L stainless steel for X = 0.6/~m, T = 300 K, and for X = 5/zm 
and T = 773 K; they are shown in Fig. 18 as they correspond to ~ = 0 ~ 
The remarks, made for a single spherical cap (Section 4.1), hold in this 
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Fig. 18. Directional spectral emissivities c~(7) calculated with an exponential slope distribu- 
tion for various values of ~. The emissivity c~,('/) of optically smooth 304 L stainless steel, 
represented by the curves ~ = 0 ~ corresponds to the following cases: (a) X = 0.6/zm, T = 300 
K ; ( b )  X = 5 # m ,  T = 7 7 3  K. 
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case: the emission of the surface is mainly increased towards the normal by 
the roughness and becomes isotropic, even in the infrared range, for high 
values of ~. 

4.3. Comparison of Theoretical Results with Measurements for 
Ballblasted and Sandblasted Samples 

Two experimental arrangements are used to measure the radiative 
properties of the samples, for the visible and infrared ranges. 

For short wavelengths, 0.3 < X < 1 /xm, and for easily reached temper- 
atures, 200 < T < 1000 K, the emitted fluxes are low so that the directional 
spectral emissivity cannot be directly measured; however, the measurement 
of the spectral reflectivities, defined in Section 2, 0x , Eq. (la), or Oxi .. . .  
Eq. (lb), also yields the emissivity, Eq. (2a). An experimental setup, 
described in refs. [14, 18, 21], uses an integrating sphere, the inner side of 
which is covered with a barium sulfate layer. Barium sulfate is a good 
reflector and diffusor, so that the measurement of Ox iso. is possible. As in 
Section 3.2.1, the experiments are conducted under polarized light. A 
chopped xenon lamp acts as a source so that the emitted continuous flux is 
eliminated. The precision of the measurements varies from 2 to 5%. 

In the infrared range, 2 < X < 15/~m, and for 500 < T < 1000 K, the 
directional spectral emissivities are measured by an experimental arrange- 
ment [3, 10] similar to the one described in Section 3.2.1. But, for rough or 
smooth surfaces, the target area need not be as large as for grooved 
surfaces. In this case, blackbody and samples of small dimensions are 
adequate. Finally, the monochromator is replaced by a continuous filter. 

Various direct or indirect determinations of the emissivities e~,r('~) of 
ballblasted, shotblasted, and sandblasted surfaces were conducted, in the 
wavelength and temperature ranges indicated above, with a dual purpose: 

1. To demonstrate the substantial increase of emission or absorption 
resulting from superficial treatments easily carried out 

2. To compare the experimental results with the values formerly 
computed 

Figure 19a shows the evolution of the quasi-normal spectral emissivity 
t 0 ~ ! 0 exr(10 ) - -  %(0 ) as a function of the wavelength, with 0.3 < X < 0.8 /~m, 

for various samples of 304 L stainless steel at room temperature. The 
increase of emissivity is all the more important as the projectiles, grains or 
balls, are small; the smaller they are, the deeper they penetrate and the 
cavity is all the more closed. Measurements of e~,r(0 ~ were also done for 
two samples in the infrared range at 773 K (Fig. 19b). At this temperature, 
the oxidation [21, 22], as well as the superficial treatment, increases the 
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Fig. 19. Directional spectral emissivities of ballblasted and sandblasted 304 L stainless steel 
samples as a function of the wavelength in the following cases: (a) c~,r(10~ ~ for 
T = 300 K; (b) e~r(0 ~ for T = 773 K. Curve X, directional spectral emissivity e~,(10 ~ or e~,(0 ~ 
measured for an optically smooth sample. Dot-dashed curves represent samples ball- 
blasted by making use of balls having different mean diameters D: A, (O), D--~ 65/~m; B (V), 
D ~  150 /~m; C (A), D =  300 /~m. Long-dashed curves represent samples sandblasted by 
making use of grains having different mean diameters D: D (O), D = 35/~m; E (V), D ~  105 
#m; F (A), D = 590/~m. Curve +,  shotblasted sample. 

emissivity, mainly around 2 tzm. Generally speaking, sandblasting is the 
best way to increase the emission; besides the emissivity, E~,, does not vary 
very much with the wavelength and the sandblasted surfaces may be 
considered as grey surfaces. 

Figure 20 represents the emissivities of 304 L stainless steel samples for 
X = 0.6/~m and T = 300 K, and for 2t = 5/~m and T = 773 K. Sample (B) 
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Fig. 20. Comparison between the emissivities e'x,,(7 ) measured (dashed curves) and calculated 
(solid curves) for ballblasted (B) and sandblasted (E) 304 L stainless steel samples in the 
following cases: (a) X = 0.6 ~m, T = 300 K; (b) X = 5/~m, T = 773 K. 

was ballblasted with balls of diameters between 105 and 210 /~m while 
sample (E) was sandblasted with white corundum with typical grain diame- 
ters of 105/~m. Profile recordings give a quadratic slope average of ~ = 7 ~ 
for the first sample and of ~ = 13 ~ for the second sample. The curves of 
emissivity as a function of 7, computed with these values of ~, as shown in 
Section 4.2 with an exponential slope distribution, are also represented in 
Fig. 20. It appears that the proposed model is not suited to the type of 
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roughness created by sandblasting. The same statement can be made for 
shotblasting. For the ballblasted sample, the agreement between theory and 
experimental results is rather good in the visible range, though the com- 
puted values are small for some reason. However, there is a large discrep- 
ancy in the infrared. The measured normal emissivity is twice as large as 
the calculated one. Moreover, the positions of the maximum of emissivity 
do not coincide; the maximum is closer to the normal for the experimental 
curves. 

The failure of the proposed model may be understood in the case of 
sandblasted or shotblasted surfaces; indeed the cavities hollowed out by the 
grains are deep and distorted so that profile recording is hard to perform 
and may give erroneous results. Anyway, the real profile might be quite 
different from that of spherical caps. But the discrepancies observed in the 
infrared for ballblasted surfaces cannot be interpreted in this way. Some 
other possible explanations were also discarded after examination, includ- 
ing the following: 

1. The spherical caps model, justified a priori, may appear question- 
able. However, computation based upon the V-groove model [13] 
with ~ = 7 ~ and ~ = 13 ~ leads to results almost identical to the ones 
of Fig. 20b. 

2. The measure of the average slope is certainly inaccurate. Anyhow, 
Fig. 18b proves that no value of ~ is adequate to reproduce the 
experimental data in the infrared. The theory forecasts that C~r(" / 
= 0 ~ is an increasing function of ~ whilst e~,r( ~, = 90 ~ is a decreas- 
ing function of ~, so that the emission becomes almost isotropic; 
this prediction is contradicted by the experimental results. 

3. Both gaussian and exponential distributions, though they are quite 
different, lead to similar results for e;r(~, ). So the choice of p(~)  
cannot be implicated. 

Even if computational methods differ, the theories formerly developed 
are all based on the same principles and hypotheses. Strangely, they are 
perfectly suitable for grooves but inadequate for ballblasted surfaces. This 
behavior suggests two possible explanations. 

First, the application of models, based on geometrical optics, is limited 
to the cases where the average quadratic height o of the roughnesses is 
greater than the wavelength ?t, that is, X < a -- rn'r/v~, where ~- stands for 
the length of correlation. This condition is satisfied for the grooved samples 
of Section 3. But the profile recordings of the ballblasted sample B give a a 
value between 4 and 5 /zm. Consequently, the inequality o > ?~ is verified 
for the visible range, where there is a rather good agreement between theory 
and experiment (Fig. 20a); but it is false in the infrared range, where 
discrepancies appear (Fig. 20b). 

Second, machined with the same tool, the inner sides of a groove are 
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identical from the radiative point of view to the plane material from which 
the emissivities c~,(0) are measured to be included in the computational 
process. On the contrary, the surface state of the inner sides of the small 
roughnesses is unknown; it is arbitrarily chosen to be optically smooth. 
Besides, the physical state is unreliable; the oxidation of the rough samples 
might be more pronounced than for polished samples at the same tempera- 
ture. In other words, the curve corresponding to ~ = 0, on which the 
computation is based, is unknown. 

5. CONCLUSIONS 

In some space, nuclear, or solar applications, radiative transfers are the 
dominant terms of the energy balance. Most of the time, they have to be 
enhanced through the increase of the emissivity or absorptivity of the 
chosen material. This can be accomplished by superficial deformations 
such as grooving or cavity formation, through relatively simple mechanical 
processes. These treatments present no ageing or adherence problem as 
paints do. 

However, there are some drawbacks to their use. For example, selec- 
tive materials (or materials called "selective"), which absorb most of the 
solar flux and are poor radiators, are used for solar energy applications; e~, 
is high in the visible range and low in the infrared one. Superficial 
deformations reduce the selectivity of materials since the cavity effect is all 
the more important as the material spectral emissivity is low. Anyhow, 
selectivity is not always useful. Moreover, cavity effect is a relative value, 
and an important relative rise of the emitted flux, for example, may be 
tolerated if its absolute value is lower than the concomitant increase of the 
absorbed flux. In particular, for a high concentration solar receiver, the  

critical factor is the solar absorptivity, which has to be increased whatever 
emissivity may be. 

The influence of superficial deformations or roughness can be deter- 
mined through experiments or calculations. Two cases were presented in 
this paper. 

1. For variously shaped grooves, the characteristic dimension ~ is large 
compared to the wavelength X; various theories, based on the concepts of 
geometrical optics, give results in good agreement with the experimental 
data. This is true if the real directional spectral properties of the inner sides 
of the grooves, previously measured from a plane sample, are taken into 
account. Relatively small discrepancies are recorded and are probably due 
to a misunderstanding of the precise reflection law, which is certainly not 
perfectly isotropic nor specular. 

2. When the characteristic dimension cr is close to )t, a clear discrep- 
ancy appears between the measured and calculated results. This happens 
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even if the cavi ty  shape is correct ly  represented  (as, for example ,  spher ical  
caps  for ba l lb las ted  surfaces) and  especial ly in the in f ra red  range where X is 
a lmost  equal  to or. The  d i sc repancy  can ' t  be ascr ibed  merely  to the 
inval id i ty  of geometr ical  optics. Inner  sides of the cavities are surely not  
opt ical ly  smooth  as we have assumed;  their  rad ia t ive  behav io r  is unobserv-  
able. Anyhow,  differences between theoret ical  and  exper imenta l  results are 
too impor t an t  to be  ascr ibed  to the two reasons presented.  

In conclusion,  theories have to be improved  in o rder  to expla in  the 
radia t ive  proper t ies  of rough surfaces when the d imens ions  of the cavit ies 
are close to the wavelength  Yr. I t  is interest ing to observe that  the measu red  
emissivities are a lways  greater  than those ca lcu la ted  f rom any  of the 
p roposed  models .  This observa t ion  s tands  for models  based  on geometr ica l  
optics as well as for the models  based  on physical  optics. 
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